Funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3, Theme 10.
Serio, S., Santoro, V., Celano, R., Fiore, D., Proto, M. C., Corbo, F., Clodoveo, M. L., Tardugno, R., Piccinelli, A. L., & Rastrelli, L.
Food chemistry, 2025, 468, 142392
March 14, 2025
Carob (Ceratonia siliqua) leaves: A comprehensive analysis of bioactiv...
Carob is a resilient plant with ecological and nutritional significance. A comprehensive study of Ceratonia siliqua leaves (CSL) was conducted to explore its chemical composition and health-promoting potential, aiming at improving the carob-crop sustainability through valorization of this untapped co-product. UHPLC-DAD-HRMS/MS quali-quantitative profiling of CSL revealed high levels of n-galloylated glucoses (129-196 mg g-1) and flavonol-glycosides (36-42 mg g-1), with siliquapyranone (39-56 mg g-1), 1,2,3,6-tetragalloylglusose (47-69 mg g-1) and myricitrin (27-33 mg g-1) as main markers. Highest bioactive content and antioxidant capacity (5.0 and 3.1 TEAC) was obtained during pods harvesting. Besides significant antioxidant potential, CSL exhibited strong-high inhibitory activity against α-glucosidase, acetylcholinesterase and butyrylcholinesterase (IC50, 0.51, 13.5 and 58.0 μg mL-1, respectively). 1,2,3,6-tetragalloylglusose and siliquapyranone are the main contributors to antioxidant and α-glucosidase inhibitory capacities. Excellent ability of extract and 1,2,3,6-tetragalloylglusose (IC50, 0.05 μM) in selectively inhibiting α-glucosidase, make them promising candidates to manage hyperglycemia with fewer side effects.
Principal investigators
Referred to
Spoke 06